
ProTop For Developers

[Sub-title]

[Tom Bascom, White Star Software]

November 10, 11:00, 45 minutes

Abstract: "Isn't ProTop a DBA tool? I'm an ABL developer, why would I care about it?" Yes, ProTop is an invaluable tool
for OpenEdge DBAs. But they are not the only users we consider as we enhance the product. We also consider the
needs and use-cases of ABL developers and we add many features specifically for developers. There are two primary
developer use cases that are enhanced by using ProTop: performing root-cause analysis of issues in deployed
applications, and measuring the data-access patterns and network efficiency of applications in development to ensure
sub-optimal code is not deployed in the first place. Come to this session to learn how integrating ProTop into your
development and troubleshooting workflow can benefit your company. We will show you how ProTop can give you
the proof that your data-access and index selection are what you expect them to be, and ProTop can help you quickly
pinpoint root cause and reduce mean time to resolution.

 

Tom Bascom, White Star Software 
tom@wss.com

ProTop for Developers!

Who Is White Star Software?

• The world’s oldest independent consulting organization focused on
Progress OpenEdge – since 1987, our breadth of experience is
unmatched:

– From very small and chaotic to the largest and most demanding customers

– Databases and application environments of all descriptions

– Frequent guest speakers at Progress user conferences around the world

A Few Words about the Speaker

• Tom Bascom: Progress user & roaming DBA since 1987

• Partner: White Star Software, LLC

– Expert consulting services related to all aspects of Progress and OpenEdge.

– Remote database management service for OpenEdge.

– Author of:

– Simplifying the job of managing and monitoring the world’s best business

applications.

– tom@wss.com

ProTop Is Not Just For DBAs!

• ProTop can also be very valuable in your development and test
environments!

• Many ProTop features are specifically designed to be helpful to
developers.

• Developers can even use ProTop to defend 
themselves from cruel and heartless DBAs

Agenda – ProTop For Developers

• Programmer Mode

• Where is the problem? (CSC, proGetStack)

• Table and Index Activity

– For a specific user or connection, “U”

– For users of specific tables; “8”, or indexes; “9”

• Active Transactions, Blocked Sessions

• How much time did that really take?

• What’s going on with Temp Tables?

• User Table Statistics

Programmer Mode

ProTop State, Default Mode

ProTop Friendly Name

Sampling Mode

Sample Type

Time Mode

Data Method

Data Rows

Data Bytes

Fetch Time

DB Logical Name

My Usr#

My Logical Reads

My OS Reads

Programmer Mode

Programmer Mode

• Changes from the ProTop default of “rate” metrics to providing the
raw count “on demand” rather than at automatic intervals.

• Sample time is no longer considered.

• So instead of seeing 12345 record reads per second with the sample

automatically refreshing every 10 seconds you see that there were
98765 record reads in the sample period that you choose.

• Enable with control-p.

ProTop State, Programmer Mode

ProTop Friendly Name

Sampling Mode

Sample Type

Time Mode

Data Method

Data Rows

Data Bytes

Fetch Time

DB Logical Name

My Usr#

My Logical Reads

My OS Reads

Programmer Mode

Programmer Mode - Usage

• Prepare your test scenario (in a different window from ProTop).

• In ProTop, select the USR (#) or ProcessId (P) to monitor, then select

“U” for User Information.

• Initialize the counters with a <spacebar> command.

• Run your test scenario (in the other window).

• Come back to ProTop and get the results with another <spacebar>.

Where Is The Problem?
The Client Statement Cache

Where Is The Problem?

• Knowing that you have unexpected activity is a good first step.

• Knowing what line# of which program is even better!

CSC vs ProGetStack

CSC

• Pro:

– Can be easily and selectively enabled from

the db server

– Only need DBA privileges

• Con:

– CSC only reports the line# of the last

database activity

– CSC is “forward looking”

– Has an impact on client/server connections

ProGetStack

• Pro:

– Not restricted to reporting database

access line numbers

– ProGetStack does not need to be enabled

in advance

• Con:

– Must be executed from wherever the

client is running, not the db server

– Need system admin privileges

Client Statement Cache

Client Statement Cache Caveat

Table and Index Activity

Setting The Stage For Table & Index Monitoring

• By default OpenEdge only tracks the first 50
tables and indexes

• -tablerangesize and -indexrangesize need to be
properly set

• “T” (upper case) will calculate the proper
values

• System tables are surprisingly interesting

• OpenEdge does not track LOBs prior to OE12

Per Session Table and Index Activity (Global)

Users of a Table or Index (“8” or “9”)

Users of a Specific Table or Index

Active Transactions, Blocked Sessions

Active Transactions, Blocked Sessions

Caveat Regarding _LOCK

• Access is much faster in 11.4+

• But it is still slow if -L is very large!

• And many production databases run with very, very large -L values.

• Embedding code in applications to find out who has a record lock is

not always good idea.

How Much Time Did That Really Take?

The Code Profiler

The Code Profiler Is Awesome!

• As a developer you may already be familiar with it from PDSOE

• You can also programmatically embed an ad-hoc profiling capability

in your application:

• Sample code is in protop-src.zip, lib/zprof*

profiler:enabled = yes.
profiler:description = “helpful description”.
profiler:profiling = yes.
profiler:file-name = “profiler.prf”.
/* do stuff */
profiler:enabled = no.
profiler:profiling = no.
profiler:write-data().

Embedding The Profiler In Your Application

Embedding The Profiler In Your Application

Embedding The Profiler In Your Application

Profiler Caveats

• The Profiler Creates VERY Large Temp-Files!

• You must exit the profiled code cleanly, if an error occurs you will

not get any useable data.

• You need the DEBUG-LIST files that match the r-code being profiled.

• Code that contains multiple statements on a single line can hide

from the profiler.

• Profiling can sometimes have a noticeable impact on runtime.

• Documentation is “light”.

What’s Going On With Temp-Tables?

Temp Table “VSTs”

Temp Table Statistics

• Temp-tables and ProDataSets are vital components of modern
applications

• Programmers have very little insight into how the temp tables in
their code are behaving

• Temp Table Statistics were introduced in OE11

Aggregate Temp-Table Info
 ┌─────────────────────────── Temp-Table Info
───────────────────────────┐
 │ │
 │ /home/pt3dev/tmp/DBI-9950762889q2d8B │
 │ │
 │ 1048576 DBI File Size 84 current temp-tables │
 │ 1KB TT DB Block Size 5 archived │
 │ 1288 TT DB Total Blocks 125 peak │
 │ 193 TT DB Empty Blocks 275 tt indexes │
 │ 2 TT DB Free Blocks 1669 total current records │
 │ 0 TT DB RM Free Blocks 109831 total current bytes │
 │ │
 │ 99.53% tt hit ratio │
 │ │
 │ 3225 tt rec create │
 │ 34660 tt rec read │
 │ 3032 tt rec update │
 │ 85 tt rec delete │
 │ 96186 tt rec log rd │
 │ 453 tt rec os rd │
 │ 1046 tt rec os wr │
 │ 5376 tt TRX │
 │ 64 tt Undos │
 │ │
 │
───
──────────────────── │
 │ <OK> <Help> │

└──

Detailed Temp-Table Info

TT Name Procedure Name Bytes Records Create Read Update Del OSRd
────────────────────────────── ─────────────── ─────── ───────
─────── ─────── ─────── ──── ────
tt_tbl protop.p 5863 184 184 17145 9 3
tt_tbl.xid-idx protop.p 185 17801

tt_idx protop.p 10650 201 201 416 32 4
tt_idx.xid-idx protop.p 202 744

tt_screenElement lib/dynscreen.p 34254 408 408 825 165 34
tt_screenElement.scrFrame lib/dynscreen.p 418 1409
tt_screenElement.elNm_frNm_elH lib/dynscreen.p 418 407

tt_browseColumnList lib/dynscreen.p 2701 65 65 989 37 4
tt_browseColumnList.brwCol lib/dynscreen.p 65 468
tt_browseColumnList.brwHdl lib/dynscreen.p 102 734

Progress.Database.TempTableInfo

• ArchiveIndexStatistics

• ArchiveTableStatistics

• TempTableCount

• TempTablePeak

• GetTableInfoByPosition()

• GetTableInfoByID()

• GetTableStatHistoryHandle()

• GetIndexInfoByID()

• GetIndexStatHistoryHandle()

• GetVSTHandle()

• -ttbaseindex 1

• -ttbasetable 1

• -ttindexrangesize 1000

• -tttablerangesize 1000

“Id” is what you need to link things together!

Enabling TT Data Collection

&IF DECIMAL(SUBSTRING(PROVERSION,1,INDEX(PROVERSION,".") + 1)) > 11.0
&THEN

if os-getenv("TTDEBUG") = "yes" then

 do:

 Progress.Database.TempTableInfo:ArchiveTableStatistics = true no-error.

 Progress.Database.TempTableInfo:ArchiveIndexStatistics = true no-error.

 end.

&ENDIF ** Cannot set Progress.Database.TempTableInfo:ArchiveTableStatistics (15247)

(means that you forgot to set –ttrangesize etc…)

Sample Code

/* lib/ttinfo.p
 *
 * show some useful information about this session's temp-tables
 * temp-table info requires OpenEdge 11 or higher
 *
 * # these define the temp-table stats collection for oe11 clients
 * # older clients should ignore these parameters (but we comment them out
anyway).
 *
 * -ttbaseindex 1
 * -ttbasetable 1
 * -ttindexrangesize 1000 # 1000 is a guess at the maximum number of TT
indexes used
 * -tttablerangesize 1000
 * -tmpbsize 1 # 32 rows per block
 * -tmpbsize 4 # 256 rows per block
 * -tmpbsize 8 # 256 rows per block
 *
 * also of interest: http://knowledgebase.progress.com/articles/Article/P95826

User Table Stats
(and Index Statistics Too)

User Table and Index Statistics

• Aggregate Table and Index stats were introduced in Progress v8.3

• That was such a great feature that user level stats were introduced

in OE 10.1B!

• Now you can see how much of your database activity is from a given

user.

• This is run-time behavior – not static, compile time analysis of index

selection; IOW, what really happens vs what “should” happen.

Gathering User Table & Index Statistics
run lib/usertablestats.p persistent.

for each dictdb.order no-lock:
end.

{lib/userstats.i}

run getUStats (
 output table tt_usrTblInfo by-reference,
 output table tt_usrIdxInfo by-reference
).

for each tt_usrTblInfo by tt_usrTblInfo.tblRd descending:
 display tblName tblRd tblCr tblUp tblDl with 5 down.
end.

for each tt_usrIdxInfo by tt_usrIdxInfo.idxRd descending:
 display idxName idxRd idxCr idxDl with 5 down.
end.

Top 5 User Tables & Indexes
 ┌─────────────── Top 5 Tables Used by My Session
───────────────┐
 │tblName tblRd tblCr tblUp tblDl│
 │──────────────────── ────────── ──────────
────────── ──────────│
 │Order-Line 2,619 0 0 0│
 │Customer 332 0 0 0│
 │Order 207 0 0 0│
 │Item 165 0 0 0│
 │Salesrep 9 0 0 0│

└───
───────────────────┘
┌─────────────────── Top 5 Indexes Used by My Session
───────────────────┐
│idxName idxRd idxCr idxDl│
│──
────────── ────────── ──────────│
│Order-Line.order-line 2,622 0 0│
│_Field._Field-Name 2,191 0 0│
│_Index._File/Index 873 0 0│
│_File._File-Name 577 0 0│

More Sample Code

/* lib/utblstats.p
 *
 * example test harness for using lib/
usertablestats.p
 *
 * mpro /db/db/s2k -p lib/utblstats.p
 *
 */

The SmartComponent Library

The SmartComponent Library

Caution

• BLOB and CLOB field activity is misreported prior to OE12.2!

• It will be recorded as activity on tables that have the same “table Id”

as the “LOB Id” (fixed in OE12.2).

• Memory use:

(-n + -Mn + 1) * tablerangesize * 32

(-n + -Mn + 1) * indexrangesize * 40

More Stuff!!!

• Server info (s)

– Client/server is becoming more popular, with PASOE containers, etc., so tuning remote clients is

more important than ever. Are your client params giving you the best throughput and minimizing
round trips? Use this DC to answer those questions quantitatively.

• Ctrl+r reports

– Useful reports for both DBAs and devs; devs may be interested in the dictionary reports, index

overlap, and redundant indexes

• Extensibility

– Appmon lets you monitor application-specific metrics that are important to your business

• Pause (useful when sampling) so you can manually scrape or screenshot

• Easily e-mail a screenshot of ProTop data (@)

• Sequence viewer (/); definitions and current values

• For SQL developers: when did you last update your query-optimizer stats?

– ProTop Configuration (c) will tell you

– ProTop gives you Ctrl-u to create a SQL update stats script

Questions?

51

Thank You!

• Real time monitoring and detailed drill-down

• Historical trending, zoom in or out across years of data at will

• Insightful alerting – the information needed to act on alerts

• Routine “health checks”

• A single pane of glass dashboard

• It’s not just the database!

– App servers

– Pro2

– CODE behaviors and profiling

– User defined, application specific metrics

