Coding for Network Performance

Tom Bascom, White Star Software
Thursday 11:45-12:45

Abstract: Are you wondering why your client/server code is so slow? And what you can do about it?
This session will discuss the OpenEdge client/server messaging protocol and its impact on the performance of

database queries. We will cover coding best practices, tuning opportunities, testing methodologies and present
benchmark results!

Wﬁ\/v’r e §’m/r §Uﬂmre 1

FOR EACH customer FIELDS (name balance) NO-

LOCK:
/* .. %/
END.

White Star Software

Coding for Network Performance

/

Tom Bascom, White Star Software
tom@wss.com

Agenda

« What Are Network Messages?

e Improving Existing “Queries”

e FIND FIRST Does Not Help

« How to Tune Network Messages

e Summary

White Star Software

What Are
Network Messages?

White Star Software 4

Progress Network Messages

W

When Progress runs over a network data is marshalled into “messages”:

— The client requests data (makes a query with FIND or FOR EACH...)

— The server resolves the query and sends back the results

— The client might upgrade locks

— The client eventually releases locks and “cursors”

o “Messages” are potentially broken up by TCP/IP into multiple “packets”.

e Asingle round trip may only take a few milliseconds — but they add up very
quickly.

e During peak periods some applications generate 200,000 or more

messages per second!

White Star Software

FIND NO-LOCK

FIND customer WHERE cust-num = 10 NO-LOCK.

One round trip (two messages) to retrieve the record.

Client ---> Server Requests record
Server ---> Client Sends record back

One more one way message to release the cursor.

Client ---> Server Releases the cursor

White Star Software

FOR EACH NO-LOCK

W

FOR EACH customer NO-LOCK:

Fetch the first record with one round-trip then as many records as can fit in a message per
round-trip. Subject to the following limits:

—Mm message buffer size (default 1024)

-prefetchDelay skips the single record initial message (default disabled)
-prefetchFactor % full to fill the message (default 0)
-prefetchNumRecs number of records per message (default 16)

A FOR EACH is potentially many fewer messages than the equivalent set of FIND statements.
Could return dozens or even hundreds of records in a single round trip!

White Star Software

FOR EACH, With JOIN & SORT

FOR EACH customer NO-LOCK,
EACH order NO-LOCK OF customer
BY ship-date:

Performance depends on if the sort is only on the main table or not.
This process can use a lot of round trips!
Not recommended, try to use nested FOR EACH statements instead:

FOR EACH customer NO-LOCK:
FOR EACH order NO-LOCK OF customer:
/* would need to resolve ordering issue.. */

Or, better-yet, build temp-tables (more on this later)

White Star Software

W

Improving Existing Queries

White Star Software 9

Pick Your Battles

The performance enhancement possible with a given
improvement is limited by the fraction of the
execution time that the improved feature is used.

-- Amdahl’s Law

1
/+f

S:Q:
r f,/

White Star Software

In other words:

 Trying to improve small things that nobody

notices probably isn’t the road to fame and
fortune.

e Big queries that return lots of data and which
are frequently used by lots of users will be
much more noticeable.

White Star Software

Simple Things That Help Existing Queries

W

e FIELDS — can reduce the size of records and thus allow more records to be
packed into a message, i.e.

FOR EACH customer FIELDS (name balance) NO-LOCK:

or.
FOR EACH customer EXCEPT (photo) NO-LOCK:

o CACHE — client side buffer for records returned (default 50 - supposedly)

DEFINE QUERY q FOR customer FIELDS (name) CACHE 1000

White Star Software

Things That Hurt (A Lot)

SHARE-LOCK (frequently accidental)

— Breaks the bundling of records
— For a large result set SHARE-LOCK might be literally 100x worse!
— Easy to accidentally get wrong

Bad WHERE Clauses
Nesting and JOINs

CAN-DO()

— Is a SECURITY function — not a string function
— Always evaluated on the client

— Has many unexpected behaviors

White Star Software

Q
£
_I

S

Q

&

&

(O

S

o]0

O

S
ol
G

O

Q
e’

(Vg
=

(Vg

(Vg

Q
)
S

O
ol

e FIND FIRST

White Star Software

W

FIND FIRST Does Not Help

White Star Software 15

W

FIND FIRST (and LAST)

« Reflexive and automatic use on each and every FIND does NOT
improve your code.

e |tis NOT a “standard”.
e Noris it a “best practice”.
e Nor does it “always work”.

e Yes, | know it is all over the place in certain code.

White Star Software 16

W

Unique FINDs

e FIND is desighed to return exactly one or zero records.
e 99.44% of FIND statements should be for UNIQUE records.
e This is one of Progress’ big advantages over SQL.

 |f the WHERE clause specifies a unique record then FIRST adds
no value.

« Worse — it confuses the maintenance programmer by implying
that there /should/ be an ordered result-set.

White Star Software 17

W

Unique FIND FIRST performance

e |tis NOT faster.
e |t does NOT “eliminate a check for ambiguous records”.

FIND FIRST customer NO-LOCK.
FIND customer NO-LOCK WHERE custNum = 1.
FIND FIRST customer NO-LOCK WHERE custNum = 1.

o All of the statements above take the same time to run and have the same
“logical” impact on the db engine.

o All statements execute the same number of “logical 10 ops” (ProTop,
PROMON or VST “block access”).

o Feel free to test it yourself!

White Star Software 18

Faster FIND with FIRST?

W

o But what if FIRST does actually make a query faster?
— You have not specified UNIQUE criteria!

*

— You are missing an appropriate index to match your WHERE
clause.

— Maybe your WHERE clause isn’t doing what you think it should
be doing?

\/
\\

White Star Software 19

FIND FIRST Slogan

Returning the Wrong Record Faster!

A program that produces incorrect
results twice as fast is infinitely slower.
— John Osterhout

White Star Software 20

FIND SECOND?

W

e You used FIND FIRST anyway... what are you doing about the second
record?

« If there actually is a second record and you are actually doing something
with it:
— How did you specify the ordering?
— If you don’t care about order — what does FIRST mean?
— Are you treating it exactly the same as the FIRST record from a 3NF perspective?
— Are you processing the entire result set? Why didn’t you use FOR EACH?

White Star Software 21

“It Always Works”

W

e This usually means that the programmer does not want to deal with:

More than one Customer records found by a unique FIND. (3166)

« Adding FIRST will “make it go away”.
« It also means that your result is potentially wrong:

— What if you forgot a component of the index?
— Or didn’t know that a previously unused feature has been enabled by the users?

— Or the users suddenly create a second magical record?

White Star Software 22

Magic FIRST Records

e Records that are special by convention.
« No specific attribute identifies the usage.
e A clear violation of Third Normal Form.

find first customer no-lock where custNum > 0.
display custNum name discount.
defaultDiscount = discount.

find first customer no-lock where name >
display custNum name discount.
defaultDiscount = discount.

White Star Software 23

W

FIND FIRST Summary

e FIND FIRST is almost always a signh of lazy programming

|t does not improve performance

|t can create bugs and mask existing bugs

« Some code is infested with it — but there is no reason to make the
problem worse by continuing the habit I/
Y

White Star Software

W

How to Tune
Network Messages

w

®

White Star Software 25

What to Look For in VSTs/ProTop/PROMON

e “Records per Query”

for each field fields(_field-name) no-lock:

end.
find actServer no-lock where Server-id = 2. /* if we are the sole user.. */
display

__Server-QryRec
_Server-recSent
(_Server-recSent / _Server-QryRec)

Queries received Records sent

22 3832 174.18

White Star Software

ProTop Portal

Queries, Messages & Records
60 K

50K

40K

30K

20K

10K

White Star Software

SO0K == Received queries

- Received messages
O0K™ Sent messages
== Received records (right-y)

== Sent records (right-y)
30K

20K

10K

Data
350 1S0MB _ peev rec per msg
= Sent rec per msg
300 12.5 MiB .. MB received (right-y)
== MB sent (right-y)
250 .
10.0 MiB == Avg recv size
== Avg sent size
200
7.5 MiB
150
5.0 MiB
100
o 2.5 MiB
0 0 MiB

00:00 04:00 08:00 12:00 16:00 20:00

(A new “records per query” is coming in the next
release, for now you can manually calculate it
from “received queries” and “sent records”.)

ProTop ChUI

xyzzy Auto Interval Rate JSON 226461 0 0.518 ProTop Version 3.3sx 2017/11/09
13:50:13
Xyzzy 00 /db/xyzzy
Hit% 99.99 Commits: 341 Examined: 7532 APW Writes: 888 DB UpTime 49d 20:29 Connections:
1803
Log Reads: 2464995 Undos: 13948 New RM: 7051 APW Write$% 100 Backup Age 12:35 -n %
60%
OS Reads: 347 Lock Tbl HWM: 278422 From RM: 7051 Bufs Scanned: 3338 Brokers:
10
Rec Reads: 1037415 Curr # Locks: 1240 RM Locked: 6967 APW Scan Wrts: 2 Oldest TRX: 01:28:47 4gl Servers:
100
LogRd/RecRd: 2.38 Lock Tbl$% 0.12% From Free: 0 APW Q Wrts: 0 Curr BIClstr: 92414 SQL Servers:
22
Log Writes: 30139 Modified Bufs: 5858 Front2Bk: 481 Chkpt Q Wrts: 887 0ld BIClstr: 92374 4gl Clients:
1620
0S Writes: 888 Evicted Bufs: 0 Flushed Bufs: 0 Num BIClstrs: 40 SQL Clients:
10
Rec Creates: 7050 Chkpt Len: BI MB Used: 2560 App Server:
43
Rec Updates: 152 Web Speed:
0
Rec Deletes: 7 BI AT Curr AT Ext: 1 of 12 BIW/AIW/WDOG:
111
Rec Locks: 247647 Notes: 72627 72627 Curr Seg#: 6217 AI Mgmt:
1
Idx Blk Spl: 0 BI/AI Write$% 65 100 Empty AI: 11 APWs:
4
Writes to Log: 371 354 Full AT: 0 Local:
1597
Rec Waits: 0 I0 Response: 0.14 BI/AI Writes: 241 353 Remote:

10
L@jﬁiﬁ Wajtsw 6 BogoMIPS: 5.35 Partial Wr: 17 0 Locked AI: 0 Batch:
e Star Software

Latch Waits: 101 ZippySHM: 4.00 Busy Waits: 23 0 pica Used: 0 TRX:

Test Harness

/* foreach.p */

{actsrv_hdr.i}
{actsrv_init.i}

for each field no-lock: /* test 1 */
end.

{actsrv_end.i "for each"}
{actsrv_init.i}

for each field fields(field-name) no-lock: /* test 2 */
end.

{actsrv_end.i "for each fields()"}

White Star Software

Test Harness

/* actsrv_hdr.i

define
define
define
define

variable
variable
variable
variable

for each field

end.

*/

msgRecv
msgSent
recSent
gryRecv

no-lock:

White Star Software

as
as
as
as

integer
integer
integer
integer

no-undo.
no-undo.
no-undo.
no-undo.

/* ensure that field is in -B */

Test Harness

/* actsrv _init.i */

find actServer no-lock where Server-id = 2.

assign
msgRecv = _Server-msgRec
msgSent = _Server-msgSent
recSent = _Server-recSent
gryRecv = _Server-QryRec

etime(yes).

White Star Software

Test Harness

/* actsrv_end.i */

find actServer no-lock where Server-id = 2.

assign
msgRecv = _Server-msgRec - msgRecv
msgSent = _Server-msgSent - msgSent
recSent = _Server-recSent - recSent
gryRecv = _Server-QryRec - gryRecv
output to value("nettraffic.txt") append.
file-info:file-name = "nettraffic.txt".
if file-info:file-size < 10 then
do:
put unformatted " totMsgs msgRecv.. " skip.
put unformatted "---—————---- —————————— . | skip.
end.

White Star Software

Test Harness

put
(msgRecv + msgSent) format ">>>,>>>,>>9"
gryRecv format ">>>,>>>,>>9"
recSent format ">>>,>>>,>>9"
(recSent / gryRecv) format ">>>,>>>,>>9"
etime format ">>,>>9"

put unformatted " trim(session:parameter + " {1}") skip.

output close.

White Star Software

Demo!

White Star Software

Impact of Message Size & Prefetch Options

for each index fields(field-name) no-lock:

end.

1758 -Mm 1024

208 102 1758 17 14 222 -Mm 4096

192 94 1758 19 9 201 -Mm 8192

180 88 1758 20 11 191 -Mm 16384

162 79 1758 22 14 176 -Mm 32600

152 74 1758 24 8 160 -prefetchDelay

154 75 1758 23 12 166 -prefetchDelay -prefetchFactor 100

8 2 1758 879 22 30 -prefetchDelay -prefetchFactor 100 -prefetchNumRecs 10000

White Star Software

Impact of Message Size & PrefetchNumRecs

—prefetchNumRecs dominates!

mmm STl e

102 1758 -Mm 1024 -prefetchNumRecs 10000
28 12 1758 147 9 37 -Mm 4096 -prefetchNumRecs 10000
16 6 1758 293 13 29 -Mm 8192 -prefetchNumRecs 10000
10 3 1758 586 9 19 -Mm 16384 -prefetchNumRecs 10000
8 2 1758 879 23 31 -Mm 32600 -prefetchNumRecs 10000
8 2 1758 879 22 30 -prefetchDelay -prefetchNumRecs 10000
146 71 1758 25 13 159 -prefetchDelay -prefetchFactor 100
8 2 1758 879 22 30 -prefetchDelay -prefetchFactor 100 -prefetchNumRecs 10000

White Star Software

Impact of Basic Coding Approaches

3519 1758 3658 do while ... find no-lock

5276 0 1758 ? 174 5450 do while ... find share-lock
28 12 1758 147 7 35 for each no-lock
8 2 1758 879 22 30 FENL fields()

5277 1758 1758 1 155 5432 FE share-lock

3520 1758 1758 1 134 3654 FE exclusive-lock

3519 1758 1758 1 87 3606 open query

3519 1758 1758 1 84 3603 open query fields()
7 2 1758 879 29 36 open query fields() cache 50
7 2 1758 879 30 37 open query fields() cache 5000
20 8 1758 220 113 133 sql89 select *
8 2 1758 879 37 45 sql89 select _field-name

No, | am not endorsing SQL89

White Star Software

Nesting and Joins

/* simple nesting */ /* ugly sort criteria */

for each file no-lock: for each file no-lock,
for each field no-lock of file: each field no-lock of file
end. by field-name:

end. end.

/* use a join instead of nesting */

for each file no-lock,
each field no-lock of file:

end.
totfsgs L anRecs | recsnt L ecary Letme Lnetine oesriton____________
1950 620 nested FE
587 195 1950 10 33 620 joined FE
6183 195 4748 24 207 6390 joined FE w/ sort on inner field
33 14 1951 139 150 183 TT option

White Star Software

Nesting and Joins — TT Option

define temp-table tt file no-undo like file

field xdbRecid as recid A major reduction in network

index xdbRecid-idx is unique xdbRecid.

define temp-table tt field no-undo like field. trafflc and . b|g |mprovement
for each _file no-lock: in “across the network time”!

create tt file.
buffer-copy file to tt file.
xdbRecid = recid(file).

end WARNING - don’t just do this automatically. If

for each field no-lock: your code is designed to be run with shared
create tt field. memory this approach may make it slower.
buffer-copy field to tt field.

end. Bl B

for each tt file no-lock,
each tt field no-lock where tt file.xdbRecid = tt field. file-
recid
by tt field. field-name:

[Eﬁﬁﬁ?fgﬁuﬂfgrﬂumre

Use App Servers

o Position app servers “close” to the db server to minimize traffic

“over the wire”

e In a virtualized environment VMs on the same physical server may
implement TCP/IP in memory — avoiding NICs completely

e App server results are “streamed” to the client — they are not
grouped as records

White Star Software

Summary

White Star Software 41

W

Summary

e Large —prefetchNumRecs is critical

e Large —-Mm message sizes are helpful

« Where feasible the FIELDS phrase is very helpful

« Use temp tables to cache data locally!

« Small differences in coding approaches can make a big difference

e Simple mistakes can be catastrophic!

White Star Software

Questions?

White Star Software

Thank You!

White Star Software

White Star Software

Kbase 18342

Every FIND, FOR EACH, OPEN QUERY, GET, PRESELECT, ASSIGN, CREATE, DELETE (all data manipulation statements) generates client/server traffic when the
database is connected with the -H -S client connection parameters. Being aware of the above and knowing how much traffic each 4GL/ABL statement generates
can make the difference in a fast versus a very slow networked application.

SIMPLE FIND
FIND customer WHERE cust-num = 10 NO-LOCK.

No locking is involved.
One round trip to retrieve the record.
One more one way message to release the cursor.

Client ---> Server Requests record
Server ---> Client Sends record back
Client ---> Server Releases the cursor

GENERIC FIND

One round-trip to request record/get the record

No extra message to request a lock (RECID finds don't allocate a cursor).

If the cursor will not be used again it is released immediately, if it might be used later it will only be released when the record goes out of scope which is done
with a one way message.

g‘x/? areﬁ%fr ed W|th a one way message.
na rans ction n S are released until the end of the transaction.

